

Change of basis

Linear Algebra

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>

Maryam Ramezani maryam.ramezani@sharif.edu

Overview

Invertible Linear Maps

Definition

□ A linear map $T \in L(V, W)$ is called invertible if there exists a linear map $S \in L(W, V)$ such that ST equals the identity operator on V and TS equals the identity operator on W.

□ A linear map $S \in L(W, V)$ satisfying ST = I and TS = I is called an inverse of T (note that the first I is the identity operator on V and the second I is the identity operator on W).

Theorem

An invertible linear map has a unique inverse.

Definition

If T is invertible, then its inverse is denoted by T^{-1} . In other words, if $T \in \mathcal{L}(V, W)$ is invertible, then T^{-1} is the unique element of $\mathcal{L}(W, V)$ such that $T^{-1}T = I$ and $TT^{-1} = I$.

Example

• Find the inverse of T(x, y, z) = (-y, x, 4z)

Theorem

A linear map is invertible if and only if it is injective and surjective.

Theorem

Suppose that V and W are finite-dimensional vector spaces, dim V = dim W, and $T \in \mathcal{L}(V, W)$. Then T is invertible $\Leftrightarrow T$ is injective $\Leftrightarrow T$ is surjective.

Basis Review

• Find the coordinate vector of $2 + 7x + x^2 \in \mathbb{P}^2$ with respect to the basis B = { $x + x^2$, 1 + x^2 , 1 + x}.

• If C = {1, x, x^2 } is the standard basis of P² then we have $[2 + 7x + x^2]_C = (2, 7, 1).$

We want to find scalars $c_1, c_2, c_3 \in \mathbb{R}$ such that $2 + 7x + x^2 = c_1(x + x^2) + c_2(1 + x^2) + c_3(1 + x).$

By matching coefficients of powers of x on the left-hand and right-hand sides above, we arrive at following system of linear equations:

$$c_2 + c_3 = 2$$

 $c_1 + c_3 = 7$
 $c_1 + c_2 = 1$

This linear system has $c_1 = 3$, $c_2 = -2$, $c_3 = 4$ as its unique solution, so our desired coordinate vector is

$$[2 + 7x + x2] = (c1, c2, c3) = (3, -2, 4)$$

Change of Basis

 $\square \quad B = \{v_1, \dots, v_n\} \text{ are basis of } \mathbb{R}^n.$

$$\square \mathsf{P} = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$

$$\square P[a]_B = a$$

CE282: Linear Algebra

Theorem

Let B = { b_1 , b_2 , ..., b_n } and C = { c_1 , c_2 , ..., c_n } be basses of a vector space V. Then there is a unique n × n matrix $P_{C \leftarrow B}$ such that

$$[x]_C = P_{C \leftarrow B}[x]_B$$

The columns of $P_{C \leftarrow B}$ are the C-coordinate vectors of the vectors in basis B. That is ,

$$P_{C \leftarrow B} = [[b_1]_C \ [b_2]_C \ \dots \ [b_n]_C]$$

$$(\underset{\mathcal{C}\leftarrow\mathcal{B}}{\overset{P}{\leftarrow}})^{-1}=\underset{\mathcal{B}\leftarrow\mathcal{C}}{\overset{P}{\leftarrow}}$$

$$P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}, \quad P_{\mathcal{C}}[\mathbf{x}]_{\mathcal{C}} = \mathbf{x}, \text{ and } [\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}\mathbf{x}$$

 $[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}\mathbf{x} = P_{\mathcal{C}}^{-1}P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$

Hamid R. Rabiee & Maryam Ramezani

Find the change-of-basis matrices $P_{C \leftarrow B}$ and $P_{B \leftarrow C}$ for the bases $B = \{x + x^2, 1 + x^2, 1 + x\}$ and $C = \{1, x, x^2\}$ of \mathbb{P}^2 . Then find the coordinate vector of $2 + 7x + x^2$ with respect to B.

Change of basis

Example

Let
$$b_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
, $b_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $c_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix}$, $c_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$, the bases for \mathbb{R}^2 given by $B = \{b_1, b_2\}$, $C = \{c_1, c_2\}$.

- a. Find the change-of-coordinates matrix from C to B.
- b. Find the change-of-coordinates matrix from B to C.

Find the change-of-basis matrix $P_{C \leftarrow B}$, where

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\}, C = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}.$$

L(V) and Change of Basis

Transformation with change of basis

- □ B = { $v_1, v_2, ..., v_n$ } are basis of \mathbb{R}^n . □ P = [$v_1 \ v_2 \ ... \ v_n$] □ [$T(v_1)$] = $D^{-1}AD[v_1]$
- $\Box \quad [T(x)]_B = P^{-1}AP[x]_B$

Change of basis

 $[A]_B = P^{-1}[A]_E P$

CE282: Linear Algebra

L(V,W) and Change of Basis

Matrix representation of linear function

A linear transformation which looks complex with respect to one basis can become much easier to understand when you choose the correct basis.

Important

Let T:
$$V \to W$$
 be a linear function and $u = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \in V$ where $E = \{e_1, \dots, e_n\}, B = \{b_1, \dots, b_m\}$

are basis of V, W.

$$u = c_1 e_1 + \dots + c_n e_n \quad \rightarrow T(u) = c_1 T(e_1) + \dots + c_n T(e_n)$$

$$T(u) = d_1 b_1 + \dots + d_m b_m$$

 $[T(u)]_B = [[T(e_1)]_B, ..., [T(e_n)]_B][T(u)]_E$

We have B = { $x^3, x^2, x, 1$ } and $B' = {x^2, x, 1}$ are bases for $P_3(x)$ and $P_2(x)$, respectively. Find the matrix of transformation T: $P_3(x) \rightarrow P_2(x)$.

Solution

Since
$$\begin{bmatrix} a_3\\a_2\\a_1\\a_0 \end{bmatrix}$$
 the vector representation of $a_3x^3 + a_2x^2 + a_1x + a_0 \in \mathbb{P}^3(x)$, we have
$$\begin{bmatrix} \frac{d}{dt} \end{bmatrix}_{\{B,B'\}} = \begin{bmatrix} \frac{d}{dt}(x^3) & \frac{d}{dt}(x^2) & \frac{d}{dt}(x) & \frac{d}{dt}(1) \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Definition

Suppose V and W are vector spaces over the same field. We say that V and W are **isomorphic**, denoted by $V \cong W$, if there exists an invertible linear transformation T: $V \to W$ (called an **isomorphism** from V to W).

- If T: $V \to W$ is an isomorphism then so is $T^{-1}: W \to V$.
- If $T: V \to W$ and $S: W \to X$ are isomorphism then so is $S \circ T: V \to X$. in particular, if $V \cong W$ and $W \cong X$ then $V \cong X$.

Theorem

Two finite-dimensional vector spaces over ${\bf F}$ are isomorphic if and only if they have the same dimension.

Show that the vector space V = span(e^x , xe^x , x^2e^x) and \mathbb{R}^3 are isomorphic.

[7

The standard way to show that two space are isomorphic is to construct an isomorphism between them. To this end, consider the linear transformation T: $\mathbb{R}^3 \to V$ defined by

 $T(a,b,c) = ae^x + bxe^x + cx^2e^x.$

It is straightforward to show that this function is linear transformation, so we just need to convince ourselves that it is invertible. We can construct the standard matrix $[T]_{B \leftarrow E}$, where $E = \{e_1, e_2, e_3\}$ is the standard basis of \mathbb{R}^3 :

$$T_{B \leftarrow E} = \left[[T(1,0,0)]_{B}, [T(0,1,0)]_{B}, [T(0,0,1)]_{B} \right]$$
$$= \left[[e^{x}]_{B}, [xe^{x}]_{B}, [x^{2}e^{x}]_{B} \right] = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Since $[T]_{B \leftarrow E}$ is clearly invertible (the identity matrix is its own inverse), T is invertible too and is thus an isomorphism.

CE282: Linear Algebra