## Change of basis

Linear Algebra<br>Department of Computer Engineering<br>Sharif University of Technology<br>Hamid R. Rabiee rabiee@sharif.edu<br>Maryam Ramezani maryam.ramezani@sharif.edu

## Overview

## Invertible Linear Maps

## Basis Review

## Change of Basis

$L(V)$ and Change of Basis
$L(V, W)$ and Change of Basis

## Invertible Linear Maps

## Invertible, Inverse

## Definition

A linear map $T \in \mathrm{~L}(V, W)$ is called invertible if there exists a linear map $S \in \mathrm{~L}(W, V)$ such that $S T$ equals the identity operator on $V$ and $T S$ equals the identity operator on $W$.

A linear map $S \in \mathrm{~L}(W, V)$ satisfying $S T=I$ and $T S=I$ is called an inverse of $T$ (note that the first $I$ is the identity operator on $V$ and the second $I$ is the identity operator on $W$ ).

## Inverse is unique

## Theorem

An invertible linear map has a unique inverse.

## Definition

If $T$ is invertible, then its inverse is denoted by $T^{-1}$. In other words, if $T \in \mathscr{L}(V, W)$ is invertible, then $T^{-1}$ is the unique element of $\mathscr{L}(W, V)$ such that $T^{-1} T=I$ and $T T^{-1}=I$.

## Example

- Find the inverse of $T(x, y, z)=(-y, x, 4 z)$


## Theorem

A linear map is invertible if and only if it is injective and surjective.

## Theorem

Suppose that $V$ and $W$ are finite-dimensional vector spaces, $\operatorname{dim} V=\operatorname{dim} W$, and $T \in \mathscr{L}(V, W)$. Then
$T$ is invertible $\Leftrightarrow T$ is injective $\Leftrightarrow T$ is surjective.

## Basis Review

## Example

- Find the coordinate vector of $2+7 x+x^{2} \in \mathrm{P}^{2}$ with respect to the basis $B=\left\{x+x^{2}, 1+x^{2}, 1+x\right\}$.
- If $\mathrm{C}=\left\{1, x, x^{2}\right\}$ is the standard basis of $\mathrm{P}^{2}$ then we have
$\left[2+7 x+x^{2}\right]_{C}=(2,7,1)$.


## Solution

We want to find scalars $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ such that

$$
2+7 x+x^{2}=c_{1}\left(x+x^{2}\right)+c_{2}\left(1+x^{2}\right)+c_{3}(1+x) .
$$

By matching coefficients of powers of x on the left-hand and right-hand sides above, we arrive at following system of linear equations:

$$
\begin{aligned}
& c_{2}+c_{3}=2 \\
& c_{1}+c_{3}=7 \\
& c_{1}+c_{2}=1
\end{aligned}
$$

This linear system has $c_{1}=3, c_{2}=-2, c_{3}=4$ as its unique solution, so our desired coordinate vector is

$$
\left[2+7 x+x^{2}\right]=\left(c_{1}, c_{2}, c_{3}\right)=(3,-2,4)
$$

## Change of Basis

- $B=\left\{v_{1}, \ldots, v_{n}\right\}$ are basis of $\mathbb{R}^{n}$.
- $\mathrm{P}=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$
- $P[a]_{B}=a$


## Change of Basis

## Theorem

Let $\mathrm{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ and $\mathrm{C}=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be basses of a vector space V . Then there is a unique $\mathrm{n} \times \mathrm{n}$ matrix $P_{C \leftarrow B}$ such that

$$
[x]_{C}=P_{C \leftarrow B}[x]_{B}
$$

The columns of $P_{C \leftarrow B}$ are the C -coordinate vectors of the vectors in basis B .
That is ,

$$
P_{C \leftarrow B}=\left[\begin{array}{llll}
{\left[b_{1}\right]_{C}} & {\left[b_{2}\right]_{C}} & \ldots & {\left[b_{n}\right]_{C}}
\end{array}\right]
$$

$$
\left({ }_{\mathcal{C} \leftarrow \mathcal{B}}\right)^{-1}=\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}
$$

$\mathbb{R}^{n}$


$$
P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}=\mathbf{x}, \quad P_{\mathcal{C}}[\mathbf{x}]_{\mathcal{C}}=\mathbf{x}, \quad \text { and } \quad[\mathbf{x}]_{\mathcal{C}}=P_{\mathcal{C}}^{-1} \mathbf{x}
$$

$$
[\mathbf{x}]_{\mathcal{C}}=P_{\mathcal{C}}^{-1} \mathbf{x}=P_{\mathcal{C}}^{-1} P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

## Change of basis

## Example

Find the change-of-basis matrices $P_{C \leftarrow B}$ and $P_{B \leftarrow C}$ for the bases

$$
B=\left\{x+x^{2}, 1+x^{2}, 1+x\right\} \text { and } C=\left\{1, x, x^{2}\right\}
$$

of $\mathrm{P}^{2}$. Then find the coordinate vector of $2+7 x+x^{2}$ with respect to B .

## Change of basis

## Example

Let $b_{1}=\left[\begin{array}{c}1 \\ -3\end{array}\right], b_{2}=\left[\begin{array}{c}-2 \\ 4\end{array}\right], c_{1}=\left[\begin{array}{c}-7 \\ 9\end{array}\right], c_{2}=\left[\begin{array}{c}-5 \\ 7\end{array}\right]$, the bases for $\mathbb{R}^{2}$ given by $\mathrm{B}=\left\{b_{1}, b_{2}\right\}, \mathrm{C}=\left\{c_{1}, c_{2}\right\}$.
a. Find the change-of-coordinates matrix from $C$ to $B$.
b. Find the change-of-coordinates matrix from B to C.

## Change of basis

## Example

Find the change-of-basis matrix $P_{C \leftarrow B}$, where

$$
B=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right\}, C=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right\} .
$$

## L(V) <br> and Change of Basis

## Transformation with change of basis

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$



- $\mathrm{B}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are basis of $\mathbb{R}^{n}$.
- $\mathrm{P}=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$
- $[T(x)]_{B}=P^{-1} A P[x]_{B}$


## Change of basis



$$
[A]_{B}=P^{-1}[A]_{E} P
$$

## L(V,W) and Change of Basis

## Matrix representation of linear function

A linear transformation which looks complex with respect to one basis can become much easier to understand when you choose the correct basis.

## Important

Let $\mathrm{T}: V \rightarrow W$ be a linear function and $\mathrm{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right] \in V$ where $E=\left\{e_{1}, \ldots, e_{n}\right\}, B=\left\{b_{1}, . ., b_{m}\right\}$ are basis of $V, W$.

$$
\begin{gathered}
u=c_{1} e_{1}+\cdots+c_{n} e_{n} \quad->T(u)=c_{1} T\left(e_{1}\right)+\cdots+c_{n} T\left(e_{n}\right) \\
T(u)=d_{1} b_{1}+\cdots+d_{m} b_{m} \\
{[T(u)]_{B}=\left[\left[T\left(e_{1}\right)\right]_{B}, \cdots,\left[T\left(e_{n}\right)\right]_{B}\right][T(u)]_{E}}
\end{gathered}
$$

## Linear Transformation

## Example

We have $\mathrm{B}=\left\{x^{3}, x^{2}, x, 1\right\}$ and $B^{\prime}=\left\{x^{2}, x, 1\right\}$ are bases for $\mathrm{P}_{3}(x)$ and $\mathrm{P}_{2}(x)$, respectively. Find the matrix of transformation $\mathrm{T}: P_{3}(x) \rightarrow P_{2}(x)$.

Since $\left[\begin{array}{l}a_{3} \\ a_{2} \\ a_{1} \\ a_{0}\end{array}\right]$ the vector representation of $a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \in \mathrm{P}^{3}(\mathrm{x})$, we have

$$
\left.\begin{array}{c}
{\left[\frac{d}{d t}\right]_{\left\{B, B^{\prime}\right\}}=\left[\begin{array}{lll}
\frac{d}{d t} & \left(x^{3}\right) & \frac{d}{d t}\left(x^{2}\right)
\end{array} \frac{d}{d t}(x) \frac{d}{d t}(1)\right.}
\end{array}\right]
$$

## Definition

Suppose V and W are vector spaces over the same field. We say that V and W are isomorphic, denoted by $V \cong W$, if there exists an invertible linear transformation $\mathrm{T}: V \rightarrow W$ (called an isomorphism from V to W ).

- If $\mathrm{T}: V \rightarrow W$ is an isomorphism then so is $T^{-1}: W \rightarrow V$.
- If $\mathrm{T}: V \rightarrow W$ and $\mathrm{S}: W \rightarrow X$ are isomorphism then so is $\mathrm{S} \circ T: V \rightarrow X$.
in particular, if $V \cong W$ and $\mathrm{W} \cong X$ then $V \cong X$.


## Theorem

Two finite-dimensional vector spaces over $\mathbf{F}$ are isomorphic if and only if they have the same dimension.

## Isomorphisms

## Example

Show that the vector space $\mathrm{V}=\operatorname{span}\left(e^{x}, x e^{x}, x^{2} e^{x}\right)$ and $\mathbb{R}^{3}$ are isomorphic.

The standard way to show that two space are isomorphic is to construct an isomorphism between them. To this end, consider the linear transformation $\mathrm{T}: \mathbb{R}^{3} \rightarrow V$ defined by

$$
T(a, b, c)=a e^{x}+b x e^{x}+c x^{2} e^{x} .
$$

It is straightforward to show that this function is linear transformation, so we just need to convince ourselves that it is invertible. We can construct the standard matrix $[T]_{B \leftarrow E}$, where $E=\left\{e_{1}, e_{2}, e_{3}\right\}$ is the standard basis of $\mathbb{R}^{3}$ :

$$
\begin{aligned}
& {[T]_{B \leftarrow E}=\left[[T(1,0,0)]_{B},[T(0,1,0)]_{B},[T(0,0,1)]_{B}\right]} \\
& \quad=\left[\left[e^{x}\right]_{B},\left[x e^{x}\right]_{B},\left[x^{2} e^{x}\right]_{B}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Since $[T]_{B \leftarrow E}$ is clearly invertible (the identity matrix is its own inverse), T is invertible too and is thus an isomorphism.

